Swimmers, Singers, Or Neither?



  1. Lung Capacity
  2. Out of a student in a school choir, a swimmer, and a student who doesn't participate in either of these activities, who has the largest lung capacity out of all of them?
  3. If a non-singing average student, a student in the school choir who sings regularly, and an athlete, all blow into separate balloons, then the athlete will blow the balloon up the most because of having a larger lung capacity.
  4. 10 non-singing students will one-by-one, blow into separate balloons. The diameter of the balloon will then be measured in centimeters, and the different lung capacities will be calculated from this using a diameter in centimeters-cubic centimeters conversion chart.. They will blow into the balloon to test their vital capacity, their expiratory reserve volume, and for their tidal volume. Each of these will be tested 3 times, and the average of the 3 trials will be taken and rewritten in liters as well as cubic centimeters. These steps will then be repeated for each of the other 2 groups of students, and all data will be recorded.
  5. Materials
  • 200 22.86 cm. helium quality party balloons
  • 10 students (non-athletes and non-singers)
  • 10 athletes (swimmers)
  • 10 singers
  • 2 rulers
  • pencil
  • balloon diameter Conversion chart



Rescources

Rubin, Julian. "Lung and Respiratory System Anatomy and Physiology Science Fair Projects and Experiments." Http:www.juliantrubin.com. Julian Rubin, Jan. 2011. Web. 15 Oct. 2011.


"Lung Capacity and Age." Science Fair Project Ideas, Answers, & Tools. Ed. Science Buddies. Science Buddies, 11 Oct. 2008. Web. 15 Oct. 2011. <http://www.sciencebuddies.org/science-fair- projects/project_ideas/HumBio_p003.shtml>.
"Science Fair Projects - Do Singers Have a Larger Lung Capacity than Non-singers?" Hundreds of Science Fair Projects For Students. Ed. All Science Fair Projects. All Science Fair Projects, 2011. Web. 15 Oct. 2011. http://www.all-science-fair-projects.com/project1088_40_2.html.
Cummings, Tarla. How Swimming Will Make You a Better Singer. Rep. EzineArticles.com, 23 Jan. 2009. Web. 15 Oct. 2011.
Science Experiments. "Science Experiments Lung Capacity." Http:science-experiments.info. Science Experiments, 27 Apr. 2011. Web. 15 Oct. 2011.

F., Kaylyn. "Effect of Playing a Wind Instrument on Lung Capacity of Seventh Graders." Http:www.selah.k12.wa.us. 2003. Web. 15 Oct. 2011.


Spaceman_Spiff. "Looking for Information regarding Lung Capacity Size between a Tall and Short Person. Doing a Science Pro." Ask Questions, Find Answers - Askville. Askville, May 2008. Web. 15 Oct. 2011. <http://askville.amazon.com/Information-lung-capacity-size-Tall-Short- Person-science-project/AnswerViewer.do?requestId=9942900>.

"Measuring Lung Capacity." The Biology Corner. Biologycorner.com, 2011. Web. 15 Oct. 2011. http://www.biologycorner.com/worksheets/lungcapacity.html.

"Measuring Lung Capacity Lab." Docstoc – Documents, Templates, Forms, Ebooks, Papers & Presentations. EDCSD Biology, 2010. Web. 15 Oct. 2011. http://www.docstoc.com/docs/75879576/Measuring-Lung-Capacity-Lab.

Anglin, M.R. "What Should I Know About Lung Capacity?" WiseGEEK: Clear Answers for Common Questions//. Ed. Lindsay D. Conjecture Corporation, 14 Sept. 2011. Web. 15 Oct. 2011. http://www.wisegeek.com/what-should-i-know-about-lung-capacity.htm.

Abstract

The idea behind this science fair project is to show how the practice behind the constant expanding and retracting of the lungs
makes them larger than an average persons lungs. The variables used to represent the constant expansion and retraction of the lungs,
were the exercises of swimming and singing. Both of these exercises cause the lungs to be constantly expanding and retracting most
of what they store. So participants in each of these 2 activities were taken, and tested with the procedure along with a control group of
students who participate in neither of these activities.

Problem

Out of a student in a school choir, a swimmer, and a student who doesn't participate in either of these activities, who has the largest lung
capacity out of all of them?

Hypothesis

If a non-singing average student, a student in the school choir who sings regularly, and an athlete, all blow into separate balloons, then
the athlete will blow the balloon up the most because of having a larger lung capacity.

Experimentation

As humans, we depend on oxygen gas and respiration to run our bodily functions, and our muscles. So obviously, each individual's body runs slightly different than the next, using less or more oxygen than another person. So could there be a correlation to an activity that would help a person have a larger lung capacity, and larger oxygen intake? This experiment looked at 3 different categories of people: Swimmers, labeled as athletes, singers, who are represented by students in the school choir, and people who dont participate in either of these activities on a daily basis, labeled as Non-singers/ Non-athletes. The Non-singers/ Non-athletes would be used as a control group compared to being a singer or swimmer. They would all be tested to measure how much oxygen their lungs could hold. It was hypothesized that swimmers would be the group with the largest lung capacity, because of the constant rapid breathing from excersize. Each group consisted of 10 students who fit into each individual category. They were then asked to blow up a balloon, and by measuring for, and using the diameter of the balloon, in centimeters, the cubic centimeters can be gotten from a conversion chart. The amounts can then be taken, and changed to liters by dividing by 1000. Each participant in each group would do this 3 times, for each category. This way the averages can be taken to get a better guess for the capacities. 3 categories of lung capacity were used in this experiment, vital capacity, expiratory reserve volume, and tidal volume. The vital capacity is the largest possible amount of air that can be exhaled after a deep breath, and the expiratory reserve is the amount of air that remains in the lungs after exhaling normally but which can still be expelled. The tidal volume is the amount of air being inhaled or expelled during normal breathing. After getting the averages for each category and each trial, the group with a larger capacity can be looked at.

Log Book Entries

12/17- Data from athletes collected at swim practice. posted on, 12/19. C.B
12/19- numbers are averaged for the swimmers lung capacities. C.B
12/21- Data from singers and non-singers/non-athletes collected,converted, and averaged. C.B
12/21- Posted a copy of the diameter to volume conversion chart. C.B
1/3- finished collecting,converting, and posting Non-swimmer/ Non-singer data and another singers data.C.B
1/5- finished collecting,converting, and posting singer data. C.B
1/5-looking at the completed data table, each category seems to have a very wide range of lung capacities. C.B
1/5- All of the final calculation in liters were bolded to make them easier to pick out. All of the averages were averaged
with other data in each group, to make it easier to look at all the data and draw conclusions. C.B
1/8- Finished Science fair project. C.B

Procedure-

10 students from one category will one-by-one, blow into separate balloons. The diameter of the balloon will then be measured in centimeters, and the different lung capacities will be calculated from this using a diameter in centimeters-cubic centimeters conversion chart.. They will blow into the balloon to test their vital capacity, their expiratory reserve volume, and for their tidal volume. Each of these will be tested 3 times, and the average of the 3 trials will be taken and rewritten in liters as well as cubic centimeters. These steps will then be repeated for each of the other 2 groups of students, and all data will be recorded.

Experimental Results


Table 1



Vital Capacity




Expiratory Reserve




Tidal Volume



Trial
1
2
3
Average
avg, in liters
1
2
3
Average
avg, in liters
1
2
3
Average
avg, in liters
Singers















1
3250
sq.cm
2800
sq.cm
2900
sq.cm
2983
sq.cm
2.983
liters
700
sq.cm
1100
sq.cm
2375
sq.cm
1392
sq.cm
1.392
liters
1000
sq.cm
1100
sq.cm
1700
sq.cm
1267
sq.cm
1.267liters
2
2800
sq.cm
3250
sq.cm
3250
sq.cm
3100
sq.cm
3.1
liters
1800
sq.cm
2125
sq.cm
1500
sq.cm
1808
sq.cm
1.808
liters
225
sq.cm
750
sq.cm
1250
sq.cm
742
sq.cm
.742liters
3
3500
sq.cm
3750
sq.cm
3750
sq.cm
3667
sq.cm
3.667
liters
700
sq.cm
1000
sq.cm
1250
sq.cm
983
sq.cm
.983
liters
1350
sq.cm
2125
sq.cm
1700
sq.cm
1725
sq.cm
1.725 liters
4
2800
sq.cm
3250
sq.cm
3250
sq.cm
3100
sq.cm
3.1
liters
1000
sq.cm
1350
sq.cm
1250
sq.cm
1200
sq.cm
1.2
liters
875
sq.cm
1700
sq.cm
1100
sq.cm
1225
sq.cm
1.225 liters
5
2100
sq.cm
3000
sq.cm
2800
sq.cm
2633
sq.cm
2.633
liters
1100
sq.cm
1100
sq.cm
1500
sq.cm
1233
sq.cm
1.233
liters
1100
sq.cm
1300
sq.cm
2125
sq.cm
1508
sq.cm
1.508 liters
6
3750sq.cm
4250sq.cm
4250sq.cm
4083sq.cm
4.083 liters
1350sq.cm
1250sq.cm
1100sq.cm
1233sq.cm
1.233 liters
237sq.cm
2800sq.cm
2800sq.cm
2658sq.cm
2.658 liters
7
2800sq.cm
2800sq.cm
2800sq.cm
2800sq.cm
2.8 liters
1100sq.cm
1350sq.cm
1250sq.cm
1233sq.cm
1.233 liters
1250sq.cm
1250sq.cm
1250sq.cm
1250sq.cm
1.25 liters
8
4000sq.cm
3250sq.cm
3750sq.cm
3667sq.cm
3.667liters
1100sq.cm
1700sq.cm
1350sq.cm
1383sq.cm
1.383liters
2375sq.cm
2125sq.cm
2600sq.cm
2367sq.cm
2.367liters
9
2800sq.cm
3000sq.cm
2800sq.cm
2867sq.cm
2.867liters
1000sq.cm
1250sq.cm
1000sq.cm
1083sq.cm
1.083liters
1100sq.cm
1250sq.cm
1100sq.cm
1150sq.cm
1.15liters
10
3250sq.cm
3300sq.cm
3500sq.cm
3350sq.cm
3.35liters
1350sq.cm
1700sq.cm
1500sq.cm
1517sq.cm
1.517liters
1000sq.cm
1250sq.cm
1100sq.cm
750sq.cm
.75liters
Average of all singers




3.225 liters




1.307 liters




1.46 liters
Non-singers/ Non-athletes















1
4000
sq.cm
4750
sq.cm
4750
sq.cm
4500
sq.cm
4.5
liters
1000
sq.cm
875
sq.cm
1250
sq.cm
1042
sq.cm
1.042
liters
240
sq.cm
250
sq.cm
250
sq.cm
247sq.cm
.247liters
2
1775
sq.cm
2600
sq.cm
2800
sq.cm
2392
sq.cm
2.392
liters
375
sq.cm
1000
sq.cm
1000
sq.cm
792
sq.cm
.792
liters
1000
sq.cm
1100
sq.cm
1500
sq.cm
1200sq.cm
1.2liters
3
2700
sq.cm
3000
sq.cm
3000
sq.cm
2900
sq.cm
2.9
liters
1350
sq.cm
1250
sq.cm
1500
sq.cm
1367
sq.cm
1.367
liters
700
sq.cm
500
sq.cm
1000
sq.cm
733sq.cm
.733liters
4
2900
sq.cm
2800
sq.cm
2600
sq.cm
2767
sq.cm
2.767
liters
2800
sq.cm
2600
sq.cm
2375
sq.cm
2592
sq.cm
2.592
liters
2000
sq.cm
450
sq.cm
700
sq.cm
1050sq.cm
1.05liters
5
3250
sq.cm
4250
sq.cm
4500
sq.cm
4000
sq.cm
4
liters
2125
sq.cm
2600
sq.cm
3000
sq.cm
2575
sq.cm
2.575
liters
2000
sq.cm
2125
sq.cm
2125
sq.cm
2083sq.cm
2.083liters
6
3250
sq.cm
3750
sq.cm
3500
sq.cm
3500
sq.cm
3.5
liters
2375
sq.cm
1250
sq.cm
2000
sq.cm
1875
sq.cm
1.875
liters
2375
sq.cm
1250
sq.cm
2000
sq.cm
1875sq.cm
1.875liters
7
2600sq.cm
3250sq.cm
3500sq.cm
3117sq.cm
3.117 liters
1100sq.cm
1250sq.cm
1500sq.cm
1283sq.cm
1.283 liters
700sq.cm
750sq.cm
1700sq.cm
1050sq.cm
1.05liters
8
2125sq.cm
3000sq.cm
2375sq.cm
2500sq.cm
2.5liters
1350sq.cm
875sq.cm
1700sq.cm
903sq.cm
.903liters
1100sq.cm
1700sq.cm
1700sq.cm
1500sq.cm
1.5liters
9
2125sq.cm
1000sq.cm
2600sq.cm
1908sq.cm
1.908liters
750sq.cm
2800sq.cm
2800sq.cm
2117sq.cm
2.117liters
300sq.cm
1100sq.cm
700sq.cm
700sq.cm
.7liters
10
2800sq.cm
2600sq.cm
3500sq.cm
2967sq.cm
2.967liters
2000sq.cm
1700sq.cm
2125sq.cm
1942sq.cm
1.942liters
1250sq.cm
1000sq.cm
1100sq.cm
1117sq.cm
1.117liters
Average of all non-singers/Non-athletes




3.055 liters




1.65 liters




1.16 liters
Athletes















1
3500sq.cm
3375sq.cm
3500sq.cm
3458sq.cm
3.458 liters
875sq.cm
750sq.cm
800sq.cm
808sq.cm
.808liters
1250sq.cm
1375sq.cm
1300sq.cm
1308sq.cm
1.308liters
2
4000sq.cm
4125sq.cm
4250sq.cm
4125sq.cm
4.125 liters
1250sq.cm
1100sq.cm
1300sq.cm
1183sq.cm
1.183liters
1500sq.cm
1275sq.cm
1300sq.cm
1358sq.cm
1.358liters
3
4000sq.cm
3500sq.cm
3750sq.cm
3750sq.cm
3.75 liters
1125sq.cm
1000sq.cm
1100sq.cm
1075sq.cm
1.075liters
1375sq.cm
1500sq.cm
1550sq.cm
1475sq.cm
1.475liters
4
4000sq.cm
4000sq.cm
3750sq.cm
3917sq.cm
3.917 liters
1250sq.cm
1325sq.cm
1275sq.cm
1283sq.cm
1.283liters
1500sq.cm
1375sq.cm
1400sq.cm
1425sq.cm
1.425liters
5
1100sq.cm
1250sq.cm
1200sq.cm
1183sq.cm
1.183 liters
200sq.cm
225sq.cm
240sq.cm
222sq.cm
.222liters
575sq.cm
600sq.cm
625sq.cm
600sq.cm
.6liters
6
1500sq.cm
1325sq.cm
1325sq.cm
1383sq.cm
1.383 liters
250sq.cm
200sq.cm
225sq.cm
225sq.cm
.225liters
625sq.cm
700sq.cm
700sq.cm
675sq.cm
.675liters
7
2125sq.cm
2000sq.cm
2600sq.cm
2242sq.cm
2.242 liters
500sq.cm
625sq.cm
575sq.cm
567sq.cm
.567liters
875sq.cm
800sq.cm
825sq.cm
833sq.cm
.833liters
8
2125sq.cm
2125sq.cm
2300sq.cm
2183sq.cm
2.183 liters
600sq.cm
550sq.cm
600sq.cm
583sq.cm
.583liters
900sq.cm
875sq.cm
850sq.cm
875sq.cm
.875liters
9
2125sq.cm
2000sq.cm
2375sq.cm
2167sq.cm
2.167 liters
500sq.cm
700sq.cm
475sq.cm
558sq.cm
.558liters
800sq.cm
750sq.cm
775sq.cm
775sq.cm
.775liters
10
1750sq.cm
1875sq.cm
2000sq.cm
1875sq.cm
1.875 liters
500sq.cm
550sq.cm
475sq.cm
508sq.cm
.508liters
775sq.cm
750sq.cm
750sq.cm
758sq.cm
.758liters
Average of all Athletes




2.63 liters




.7 liters




1.01 liters

balloons_2.JPGFigures

Figure 1- Shows 2 singers (left), 4 Non-singers/Non-athletes (top 4), and 1 swimmer (bottom).

balloons_3.JPGFigure 2- shows a Non-singer/Non-athlete giving the expiratory reserve.

Figure 3

Figure 4

Figure 5

Discussion

This experiment began with data coming in slowly, and without many things to be noticeable from the data. After all of it was gathered, things became much easier to pick out. 10 singers, 10 swimmers, and 10 students who don't participate in either activity were tested for lung capacity. When looking at the results from the data gathered, there was a lot of diversity in the data. For the Vital Capacity category, at least one of the people who were tested, had 4 liters or higher as the average capacity. Vital Capacity is the measure of all of the possible air one can fit into their lungs and expel with one breath. After all of the data for each group was averaged in the Vital Capacity category, it shows that the group with the highest Vital Capacity is actually the Singers, with an average of 3.225 liters. The Non-singers/ Non-athletes were second, with 3.055 liters, and the swimmers were last, with the smallest vital capacities, and an average of 2.63 liters. By looking at figure 3, you can see that most of the Singers scores, represented by purple rise above 3 liters. This helped to make the average higher. You can also see how the Non-singers/ Non-athletes had 2 scores above 4 liters in groups 1 and 5. A final note about figure 3, is that most of the scores for the Athletes category were at or below 3 liters. This was surprising because i believed that they would have the largest lung capacity out of any of these groups. Their scores could've been so low because not all swimmers swim at the same level. Some swimmers have different styles and breathe differently than others. Moving on to the next category, the expiratory reserve. Expiratory Reserve, is the amount of air left inside your lungs after a normal breath out. Most people only use this for speaking. The averages show that the Non-singers/ Non-athletes had the highest, with 1.65 liters. In second, was the singers, with 1.307 liters and finally the swimmers, with .7 liters. Using figure 4, you can see that in seven of the ten groups, Non-singers/ Non-athletes had higher scores. This could be because the action of not constantly using your lungs makes you breathe out less, which would make it harder to use the expiratory reserve like an athlete or singer would. That would mean they would have a larger expiratory reserve from never using it. By looking at figure 1 and 2, you can see that the expiratory reserve is significantly smaller than the Vital Capacity. It can also be seen by looking at figure 4, that the athletes, represented by green, score lower in groups 5-10, than any other score in any other groups. This proves that their expiratory reserve is significantly smaller than that of the Singers and Non-singers/ Non-athletes. The final part of the experiment deals with Tidal Volume. Tidal volume is the amount of air expelled with one normal breath. Once again, the Singers had the largest amount, with 1.46 liters. The Non-singers/ Non-athletes were second with an average of 1.16 liters, and the athletes were last again, with 1.01 liters. You can tell by looking at the Singers results on figure 5, in purple, you can see that in groups six and eight, the amounts are higher than any of the other groups or values. you will also see in green, the athletes amounts, which from group 5 until group 8 are very low in comparison to the other values of any group. It appears to be that the athletes have the lowest average scores of any group. this is probably because the singers know how to use their diaphragm to control their breathing much better than the athletes, and Non-singers/ Non-athletes do. This makes it far easier to use their lungs to take in, and expel more air. The problem with this experiment, is that no 2 people breath exactly the same way. and no 2 breaths are really exactly alike. That gives so many variables to try to get around. Also, the ages of all of the participants are not the same and lung volumes differ with age, sex, body frame and aerobic fitness.

Conclusion

After completing the experiment it was found that my hypothesis was wrong. Swimmers do not have the largest lung capacity compared to Non-singers/ Non-athletes and singers. The singers had higher capacities than anyone who was tested. Singers have much better control over their diaphragm, which helps a lot when breathing in, and expelling air.

Applications

The data found from these expirents could be very useful to various athletes. It shows that by doing simple singing excersizes and learning to control your diaphragm, you can learn to use your lungs to their full capacity. Full capacity, means more air intake. More air intake means more Oxygen to your muscles, which will increase their function. This could benifit many athletes. It would need to be taken farther to learn what about singing, causes the diaphragm to be used more, and what singing excersizes are most beneficial to the diaphragm.